
Math 4200
Monday September 14   

1.5 harmonic functions, harmonic conjugates;  1.6 analtyic functions constructed via ez 
and log z.  (We'll have more section 1.6 discussions on Wednesday.)

Announcements:  



Review example  Let f z = log z = ln z   i arg z .  Prove f z  is analytic with 

f z = 1
z

, away from z = 0 (for any continuous branch choice i.e. by specifying

arg z continuously in a neighborhood of z).  Do this three ways!  Each of these is 
easier than trying to verify the limit definition directly.

1)  Inverse function theorem and chain rule.

2)  Rectangular Cauchy-Riemann equations plus continuous partials, via the Cauchy-
Riemann Theorem.

3)  Polar coordinate CR equations, plus C1 .  (You worked out the CR equations in polar
coordinates in your last homework probably using 3220 chain rule; we can recover them

quickly from the chain rule for curves, writing f z = f r ei .



1.5 Harmonic functions and harmonic conjugates.

Let f z = f x  i y = u x, y i v x, y  be analytic in an open domain A , and 
assume u, v have continuous first and second partial derivatives.  (The shorthand for this
is u, v C2 A .)  Then from Cauchy Riemann 

ux = vy
 uy = vx

we compute
ux x uy y = vy x  vx y = 0.

(Recall from 3220 or multivariable calculus that vy x = vx y  when all second partial 
derivatives are continuous.)

Def  Let U x, y  be a C2  function in a domain A 2 .  Then U  is harmonic in A  if it
satisfies the partial differential equation

Ux x  Uy y = 0.
Def  The partial differential equation above is called Laplace's equation.



Harmonic functions are important in pure and applied math, as well as in physics.  Also 
harmonic functions of three or more variables.  If you've taken any class on partial 
differential equations or electro-magnetism, you've seen harmonic functions before. 
Here's the graph of a certain harmonic function defined on an annulus, taken from the 
Wikipedia page on harmonic functions.  It could represent a the equilibrium temperature
distribution on a thin metal plate, where the temperature values are specified as indicated
on the inner and outer circles of the annulus.



Def  Let A  open, and let u C2 A  be a harmonic function.  A function v x, y  
such that 

 f z = f x  i y = u x, y  i v x, y

is analytic in A  is called a harmonic conjugate to u x, y .  

Theorem  If u x, y C2 A  where A  is an open simply connected domain.  (A 
domain is called simply connected if its connected and "has no holes".  We'll discuss this
concept more carefully in the next chapter.)  Then there exists a harmonic conjugate 
v x, y  to u x, y , unique up to an additive constant.

proof:  u C2 A , uxx uyy = 0 is given.  The system for finding v x, y  has to be 
consistent with the Cauchy-Riemann equations for f :

vx = P x, y              = uy   
vy = Q x, y              = ux    

When you studied conservative vector fields and Green's Theorem in multivariable 
calculus you learned that a vector field P, Q T  is actually the gradient of a function 
v x, y  locally if and only if the necessary condition that vx y  would equal vy x  holds:

Py = Qx
In our case, since P, Q are partials of u x, y  this integrability condition reads as

uy y = ux x
which holds since u is harmonic!

Example  Let u x, y = x y.  Show u is harmonic.  Then find its harmonic conjugate 
v x, y  and identify the analytic function f z = u x, y i v x, y .



Rigouous proof of key point for harmonic conjugate construction

Theorem  Let A  be an open simply connected domain in 2 .  Let P, Q  be a C1  
vector field defined on A .  Then there is a function v C2 A  so that

vx = P x, y ,     vy = Q x, y            
if and only if the curl of the vector field is zero:

Py = Qx .
This condition is necessary since if v exists then vx y = Py  and vy x = Qx .

Local proof:  (Once we've carefully defined simply-connected domains in Chapter 2, the
global theorem in a simply connected region  follows from this local version.)  Let  
P, Q be real differentiable, with continuous partials in Br x0, y0 , r 0, and 
satisfying the "zero curl" condition Py = Qx .  Let v x0, y0  be any chosen constant.  
Then points x1, y1 Br x0, y0  define v x, y  in a way which would be 
consistent with P = vx, Q = vy  if we already knew the function v x, y .  There are two 
ways to do this using the fundamental theorem of Calculus, and following sides of a 
rectangle.  The curl condition ensures that both routes yield the same value:
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x
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The two formulas agree iff the difference of their right hand sides equals zero:
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This last equality holds because Py Qx = 0 in the rectangle.

Finally, using (1) and FTC to compute vy
1
we see vy

1
x1, y1 = Q x1, y1 ; and using 

(2) we compute ux
1

x1, y1 = P x1, y1  QED.





1.6  The zoo of basic analytic functions, their derivatives, and branches for their 
inverses.  (We'll continue section 1.6 on Monday.)

Def  If f :  is analytic on all of , then f  is called entire.

Examples:  

f z = zn, n 0                  f z  = n zn 1

f z = ez                                         f z = ez

f z = cos z = 1
2

ei z  e i z              f z  =   

f z  = sin z = 1
2 i

ei z  e i z           f z  = 



Here is a non-entire function, but you can define it as a differentiable function locally, 
or using any branch domain for log z:

f z = za ea log z  ,  a                       f z =

Question:  For f z = za  as above, does the multi-value definition agree with 
f z = zn, n ?   

Question:  For f z = za  as above, does the multi-value definition agree with the 

multivalue definition of the nth  root function f z = z
1
n , n ?



Math 4200-001
Week 3 concepts and homework

1.5 - 1.6
Due Friday September 18 at 11:59 p.m.

1.5   25, 26, 27, 28, 31.
1.6  1c, 2abc, 3a, 4, 5.

extra credit (5 points) From class discussions we know that complex analytic f  
correspond to real-differentiable maps F : A 2 2  which have rotation-dilation 
differential matrices, so that the differential map preserves angles between tangent 
vectors, i.e. is conformal.  It turns out that any differential map which preserves angles 
between tangent vectors, and which also preserves orientation must be a rotation 
dilation.  Prove this.

Hints:  For each tangent vector  t0 = v T x0, y0

2 , and writing 

F x, y = u x, y , v x, y , the differential map is given by
dF x0, y0

v = F t0
and the multivariable chain rule says we can compute this by the formula which uses the
differential (aka derivative or Jacobian) matrix:

dF x0, y0
v = DF x0, y0  v   = 

ux x0, y0 uy x0, y0

vx x0, y0 vy x0, y0

v1

v2
.

Your job is to show that if this differential map preserves angles, and orientation then 
the matrix must be a rotation dilation matrix.  A good way to get started is to note that

 / dF  v , dF  w   =  / v, w               v, w T x0, y0

2

implies that the two columns of the derivative matrix must perpendicular, by the choice 
v = 1, 0 T, w = 0, 1 T .   Then make use of the dot product formula you know for 
(unoriented) angles,  for at least one other good choice of v, w, to deduce that the 
magnitudes of the two columns must agree.

cos = v  w
v  w 

.

Finally, use the fact that two ordered vectors  v, w are positively oriented means that the
determinant of the matrix with columns v w  is positive.  (Geometrically this means 
that the signed angle from v  to w is between 0 and .) The differential map is 
orientation preserving means that it transforms positively oriented vectors to positively 



oriented vectors. As an aside, using determininants is how you define positive 
orientation for n vectors in n , as the right hand rule no longer makes any sense when 
n 3.  


